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COMMENT 

On the universality class of Ising models with mixed two- and 
three-spin interactions 

F Igl6it 
Institut fur Theoretische Physik, Universitat zu Koln, D-5000 Koln 41, West Germany 

Received 10 December 1986 

Abstract. It is shown that the Hamiltonian limit of a spin-f Ising model on a D-dimensional 
lattice with three-spin interactions in one direction and two-spin interactions in the other 
directions is equivalent to the same limit of a nearest-neighbour four-state spin model. 

Recently, models with many-body interactions have attracted a growing interest. The 
critical properties of these models generally depend on the range of the interaction 
and the order of the transition turns from second order to first order by increasing the 
range of the interaction (Turban 1982, Penson et ul 1982, Maritan er a1 1984, Igl6i et 
a1 1986, 1987, Alcaraz 1986). There are a few cases known when the universality class 
of a multispin coupling model and that of a nearest-neighbour coupling model are the 
same. Several models belong to the D = 2 four-state Potts universality class. A well 
known example is the Baxter-Wu model (Baxter and Wu 1973). A further example 
with an Ising model with mixed two-spin and three-spin interactions on a special 
two-dimensional lattice was constructed by Horiguchi and Gongalves (1985). A similar 
model on a square lattice introduced by Debierre and Turban (1983) also belongs to 
the four-state Potts universality class. This was shown recently by Blote er a1 (1986) 
using mapping between the two models. 

The later model has been generalised very recently by Alcaraz and Barber (1986) 
by introducing sublattices and defining different couplings. The model according to 
their numerical results shows very similar critical behaviour to the Ashkin-Teller model. 
Our aim in this comment is to show that the critical properties of the two models are 
exactly the same. To justify this statement we construct a mapping between the two 
models following the method of Blote er a1 (1986). 

To show the equivalence of the two systems a somewhat more general Ising model 
is treated on a D-dimensional lattice than that introduced by Alcaraz and Barber 
(1986). This lattice consists of ( D  - 1)-dimensional planes being perpendicular to the 
I direction. Furthermore, the lattice is divided into three sublattices, containing the 
spinsofthe (3i+l) th ,  (3i+2)th and (3i+3)thplanes ( i = O ,  1 , .  . .),respectively. Within 
one plane there are two-spin interactions, while in the t direction three-spin interactions 
exist. The Hamiltonian of the system is 

-PH = c (HP,,, + Hi,,,) 
j .  1 
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where 

H f ,  = f 
d 

(K:c+(i+ 1, j ) U (  i +  1, j’)+ K:a(i+2, j ) a ( i + 2 ,  j‘) 
, ‘ = I  

+ K:U( i+3 ,  j)a( i +3, j’)) 

with U = i l  and (i, j) denotes the position of a spin in the ith plane, while its nearest 
neighbours in this plane are characterised by the coordinates (i, j’) ,  (j’ = 1,2, . . . , d ) .  
The interaction in the t direction is 

H:J  = K:(a(i, j ) a ( i +  1, j ) o ( i + 2 ,  j) - 1) + K:(u( i +  1, j ) a ( i + 2 ,  j)a(i + 3 , j )  - 1) 

+ ~ i ( c r ( i - t - 2 ,  j ) ~ ( i + 3 ,  j)a(i +4, j) - 1). (3) 

Now let us build up the transfer matrix ( T )  of the model in the t direction. Since in 
this direction there are three-spin interactions the transfer matrix connects the states 
of two planes with the next two. T itself has a complicated structure, but as was 
observed in a similar problem by Blote ef a1 (1986) the T3’> matrix has a simple form 
in the very anisotropic limit. This time-continuum limit (Kogut 1979) can be reached 
when the different couplings satisfy the following relations: 

exp(-2K:) = rh,  exp( -2 K :) = rh2 

K:=TA, KS = TA> K: = rA3 

exp( - 2 ~ : )  = rh3 
(4) 

where r is an infinitesimal number and T3’2 is 

T3’* = 1 - TN + O( r 2 ) .  ( 5 )  

In the following we construct the Hamilton operator H. The T3’2 matrix connects the 
states of three planes (called vectors in the following) with the next three ones, and 
only those matrix elements are of O ( r )  when the two vectors differ no more than in 
the states of one triplet of spins. Thus in O ( r )  the contributions are only from the 
diagonal and from the one-spin-flip terms. However, due to the presence of three-spin 
interactions some of these terms are also of O(r2) .  Now let us first determine the O ( r )  
matrix elements of the three-spin interaction terms of the Hamiltonian (equation (3)). 
These are presented in table 1. 

As one can see from this table, only one-half of the diagonal terms and one-quarter 
of the one-spin-flip processes are of O ( r ) .  Furthermore, the different processes may 
be uniquely characterised by the states of the last two spins in each triplet, since the 
first spins are always determined by the condition that the corresponding matrix element 
is at least of O ( r ) .  Now let us identify the configurations of the last two spins: ++, 
+-, -- and -+ with the states Il), 12), 13) and 14), respectively, of a four-state spin 
variable denoted by S. With this variable the matrix elements of the two-spin interaction 

Table 1. Matrix elements of the T3I2 matrix associated with the three-spin interactions. 
First column: order  O(1); second and  third columns: order  O ( r ) .  

~~ ~ ~~ ~ 

+ + + I + + +  + + + I + + -  - + - I - + +  
- + - I - + -  + + + I +  - - +--It++ 

+ - - I + - -  + + + I - - +  --+l++t 

- -  +; - -+  - + - I +  - - + - - / - + -  
-+-+--+ - - + I - + -  
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terms of the Hamiltonian (equation (2)) can be obtained in a simple form in O(T) as 
well. (This is not true when more spins are coupled in the t direction.) Collecting all 
terms in order r the Hamilton operator H in equation (5) has the following form: 

H = i C  E(S, ,  S,.)-C M,. 
iJ ’ I 

Here j and j ’  are nearest-neighbour spins in the (D-1)-dimensional plane. The 
diagonal term of this operator is the sum of the interaction energies between neighbour- 
ing spins: 

E(l,l)=E(2,2)=E(3,3)=E(4,4)=-A,-A>-A3 
E ( 1 , 2 ) = E ( 2 , 1 ) = E ( 3 , 4 ) = E ( 4 , 3 ) = A , + h , - A 3  

(7) 
E ( 1 , 3 ) = E ( 3 ,  l )=E(2,4)=E(4,2)=A,-A,+A, 
E ( l , 4 ) = E ( 4 ,  l )=E(2,3)=E(3,2)=-AI+A,+A, 

while the spin-flip operator is given as 

This Hamilton operator describes an  equivalent ( D  - 1)-dimensional quantum system 
to the original model. 

It is easy to show, however, that this quantum system has another equivalent 
D-dimensional statistical mechanical system. Let us consider a four-state spin model 
defined on the same D-dimensional lattice as the original one. The interaction energy 
between nearest-neighbour spins has the same form as given in equation (7), but the 
coupling constants are KAIP,  K i l p ,  K i I P  instead of A I ,  A 2  and  A 3 ,  respectively, and  
S = t in the t direction and  6 = x  in all the other directions. Taking the time-continuum 
limit in the following way: 

exp( -2K: -2K:) = Th, exp(-2K:-2K?)= rh2 

exp( -2K :-2K;’) = Th3 K. :=TA, ,  K:=rA2,  K;=rAh3 (9) 
one gets back the Hamiltonian in equation (6). Now supposing that anisotropy does 
not affect the critical properties of systems then the critical behaviour of the two models 
are the same. 

In the following let us briefly discuss some special cases of this mapping. When 
in the Hamiltonian system h ,  = h z =  h3 and A I  = A ? =  A, ,  then the two equivalent systems 
are the D-dimensional four-state Potts model and the D-dimensional Ising model 
given in equation ( l ) ,  when the three sublattices are equivalent. I t  has already been 
shown by Blote et a1 (1986) that the two models for D = 2 are in the same universality 
class. Recent numerical investigations support the validity of this mapping (Alcaraz 
and Barber 1987, Vanderzande and Igl6i 1987). A further result is that, according to 
the above mapping, the transition in this Ising model for 0 3 3  is of first order. 

Another special case may be obtained when h ,  = h2 and A ,  = A , ,  which describes 
an Ising system equivalent to the Ashkin-Teller model. By choosing the subspace 
proposed by Kohmoto er a1 ( 1981 1, h I = h3 = 1, h ,  = A, A I = A 3  = p, A: = A @ ,  the equivalent 
D = 2  Ising model is the same as that investigated recently by Alcaraz and Barber 
(1986). Thus the mapping presented in this comment explains the numerical findings 
that the two models show very similar critical behaviour. 
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